Rough Path Analysis Via Fractional Calculus
نویسنده
چکیده
Using fractional calculus we define integrals of the form ∫ b a f(xt)dyt, where x and y are vector-valued Hölder continuous functions of order β ∈ ( 1 3 , 1 2 ) and f is a continuously differentiable function such that f ′ is λ-Höldr continuous for some λ > 1 β − 2. Under some further smooth conditions on f the integral is a continuous functional of x, y, and the tensor product x ⊗ y with respect to the Hölder norms. We derive some estimates for these integrals and we solve differential equations driven by the function y. We discuss some applications to stochastic integrals and stochastic differential equations.
منابع مشابه
Yang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملSensitivities via Rough Paths
Motivated by a problematic coming from mathematical finance, the paper deals with existing and additional results on the continuity and the differentiability of the Itô map associated to rough differential equations. These regularity results together with the Malliavin calculus are applied to the sensitivities analysis of stochastic differential equations driven by multidimensional Gaussian pro...
متن کاملSmoothness of the density for solutions to Gaussian Rough Differential Equations
We consider stochastic differential equations of the form dYt = V (Yt) dXt+V0 (Yt) dt driven by a multi-dimensional Gaussian process. Under the assumption that the vector fields V0 and V = (V1, . . . , Vd) satisfy Hörmander’s bracket condition, we demonstrate that Yt admits a smooth density for any t ∈ (0, T ], provided the driving noise satisfies certain non-degeneracy assumptions. Our analysi...
متن کامل